Can Supercritical CO₂ Dissolve Hydrogen Peroxide? Impregnation Case Study

Rajendar R Mallepally^{1,*}, Nicholas Montesdeoca¹, Chance Parrish¹, Kevin R Ward², and <u>Mark A M^cHugh</u>¹

 ¹ Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
² Department of Emergency Medicine, University of Michigan, Medical Center, Richmond, VA 23298-0614, USA
* Corresponding author: <u>rrmallepally@vcu.edu</u>

ABSTRACT

In this study, supercritical CO₂ is used as an effective solvent to impregnate hydrogen peroxide (H₂O₂) into cellulose acetate (CA) non-woven mats. As much as 30 wt% H₂O₂ can be impregnated at operating conditions of 25-to-40°C and 1,200-to-1,400 psi. Thermal Gravimetric analysis shows that H₂O₂–loaded CA mats lose more than 60% of available H₂O₂ when quickly heated to 37°C and held at this temperature for 60 minutes. However, in comparison, pure H₂O₂–H₂O (50:50 w/w) solution evaporates within 20 minutes at this same temperature. Shelf-life studies show that H₂O₂–loaded CA mats lose ~50% and ~100% of available H₂O₂ in 30 days, when stored at 2-to-8°C and 20-to-23°C, respectively. H₂O₂ slowly diffuses and subsequently evaporates from the CA mat at a rate determined by the diffusion of H₂O₂ through CA mat. A thin polymer coating minimize the loss of H₂O₂, thus increasing the shelf-life of the product. These mats are used as bandages for the continuous delivery of O₂ for advanced wound care. *In vitro* studies show that the developed bandages produce O₂ in a controlled rate for 24 hours. The findings of this study provide insight into the application of supercritical fluid technology as a viable approach to load H₂O₂ into different carriers.

Keywords: Supercritical CO₂, Impregnation, Hydrogen Peroxide, Controlled Release, and Wound Healing

INTRODUCTION

Sub and supercritical CO₂ assisted impregnation has been reported as a viable approach for a variety of substances such as drugs ^{1, 2}, flavors ^{3, 4}, dyes ⁵ etc. The CO₂ assisted impregnation has a number of advantages, such as processing without organic solvents and uniform distribution of active substance in the matrix. The impregnation process depends on the partitioning of the active substance between the CO₂- and polymer-rich phases. Therefore, the relative solubility of the active substance in CO₂ and in the polymer has a significant effect on the amount of active substance loaded into the polymer ⁶. Although research has been done in the area of CO₂ assisted impregnation, there are no studies aimed at loading H₂O₂ using this method.

In the present study, cellulose acetate (CA) mats are impregnated with H_2O_2 using CO_2 assisted processing. H_2O_2 is a widely used chemical oxygen producing compound, because it

decomposes into water and oxygen and it carries 47 wt% O_2 per unit mass ⁷. H₂O₂ almost instantaneously releases oxygen when contacted with a wound site, due to the catalytic decomposition by an enzyme catalase ⁸. Hence, the controlled release of H₂O₂ has the potential to be an effective method for *in situ* sustained oxygen delivery. Oxygen has been used as a therapeutic agent to speed up healing of acute and chronic wounds ^{9, 10}. Therefore, adequate supply of oxygen is important for wound healing. Roe et al. showed that topically applied O₂ penetrates ~700 µm deep through human skin ¹¹. The present study demonstrates the effect of impregnation process parameters on the H₂O₂ loading and also presents *in vitro* performance of the H₂O₂–loaded CA mats such as H₂O₂ release, O2 production rate, and shelf-life of the product.

MATERIALS AND METHODS

Materials

 $H_2O_2-H_2O$ solutions, 30:70 and 50:50 wt/wt, are purchased from Sigma Aldrich, USA. Concentrated $H_2O_2-H_2O$ solution, 80:20 wt/wt, is obtained by evaporating H_2O from 50:50 wt/wt $H_2O_2-H_2O$ solution in vacuum at 25°C. Cellulose acetate (CA) non-woven mats are a donated by Celanese, USA.

Methods

CO₂ assisted H₂O₂ impregnation

A high-pressure apparatus (Parr instruments, model 5500 with magnetic stirrer drive) is used for CO₂ assisted impregnation. CA mats, dried at 100°C for two hours, are loaded into a tea bag that is tied to the impeller shaft. $H_2O_2-H_2O$ solution is placed at the bottom of the vessel. The weight ratio of $H_2O_2-H_2O$ solution to CA mats is ten. Then the vessel is pressurized with CO₂ to 1200 ± 50 psig and temperature is maintained at 25°C using an externally mounted heating band. The system is maintained at these conditions for 60 minutes with vigorous mixing and then slowly depressurized over a period of 15 minutes. $H_2O_2-H_2O$ loading is determined by recording the CA mat weight before and after impregnation.

Characterization of H₂O₂-loaded CA mats

 H_2O_2 is extracted from H_2O_2 -loaded CA mats by suspending in 1:10 v/v sulfuric aciddistilled water solution for 15 minutes with moderate stirring. H_2O_2 concentration of the solution is determined using permanganate titration (HANNA Instruments, HI 902C, USA). The standard deviation of H_2O_2 concentration is ~2% as determined from three repeated titrations of representative H_2O_2 -loaded CA mats.

The H₂O₂–H₂O loading in the CA mats is determined using thermal gravimetric analysis (TGA) (Perkin–Elmer USA, Model Pyris 1 TGA). The furnace is continuously flushed with nitrogen gas at a flow of 3 L/hour. The H₂O₂–loaded CA mats are heated at a rate of 100 °C/minute to 37 °C and held at this temperature for 60 minutes. The mats are then quickly heated to 100 °C at a heating rate of 100 °C/minute and held at this temperature for 30 minutes.

The morphology of the CA mats is determined using scanning electron microscopy (SEM) (HITACHI SU-70). CA fibers, peeled from a representative mats, are spread on a graphite paste and then a 5 nm platinum coating is applied via spun coat (Denton Vacuum, LLC, USA, Model: Desk V TSC) onto the sample before capturing the images.

in vitro H₂O₂ release studies

The bandages are made by placing H_2O_2 -loaded CA mat between medical grade silicone films and Figure 1A shows the digital image of the bandage. A Franz cell is used to determine the *in vitro* H_2O_2 release kinetics from H_2O_2 -loaded CA mats. The cell is filled with 15 mL of saline, 0.9 wt% NaCl in distilled water, and maintained at 37°C. The bandage is mounted as depicted in Figure 1B that mimics the *in vivo* skin attachment. The saline is stirred at 100 rpm and aliquots drawn at a pre-defined time points are assayed for H_2O_2 release using permanganate titration.

Figure 1. Digital image of the bandage made from H₂O₂–loaded CA mats and silicone films (A) and Franz cell experimental set up used for *in vitro* H₂O₂ release from bandages (B).

RESULTS AND DISCUSSION

 CO_2 assisted impregnation experiments are performed with $H_2O_2-H_2O$ (50:50 w/w) solution at a fixed pressure of 1200 psig and temperatures from 25 to 45 °C. The amount of $H_2O_2-H_2O$ used in all four experiments is approximately an order of magnitude higher than the saturation solubility of $H_2O_2-H_2O$ in CO_2 . The calculations are based on the pure water solubility in high pressure CO_2 , since the solubility of $H_2O_2-H_2O$ in high pressure CO_2 is not available in the literature. $H_2O_2-H_2O-CO_2$ phase behavior studies are in progress in our laboratories; data will be presented in the conference. Figure 2 shows the effect of temperature on the H_2O_2 loading in CA mats. As the impregnation temperature increases the H_2O_2 loading in the CA mat decreases. The higher H_2O_2 loading at low temperatures is likely due to the higher partitioning of H_2O_2 from CO_2 -rich phase to the CA mat. However, the H_2O_2 loading in the CA mat is approximately the same at 25-to-30 °C and 35-to- 45 °C. The error bars of the data points are the standard deviation of H_2O_2 loading in three independent CA mats. The results suggest that lower temperatures are favorable for the H_2O_2 loading into CA mats using CO_2 process.

Figure 2. Effect of impregnation temperature on the H₂O₂ loading in CA mats at 1200 psig.

To manipulate the H_2O_2 loading into the CA mats, the impregnation experiments are performed at 25°C and 1200 psig using four different concentrations of H_2O_2 – H_2O solutions. Note that the amount of H_2O_2 – H_2O used in all the four experiments is the same and of sufficient amount to maintain the CO₂–rich phase saturated during the impregnation process. As shown in Figure 3, the H_2O_2 loading into CA mats increases linearly as H_2O_2 concentration increases in the starting solution used during the impregnation step. The overall conclusion is that H_2O_2 loading into CA mats can be tailored by manipulating the CO₂ assisted impregnation process parameters.

Figure 3. Effect of $H_2O_2-H_2O$ solution concentration, used for the CO_2 assisted impregnation, on the H_2O_2 loading in CA mats at 25°C and 1200 psig.

TGA analysis is used to determine the $H_2O_2-H_2O$ loading in the CA mats. Figure 4 shows the typical $H_2O_2-H_2O$ weight loss from the 9.5 wt% H_2O_2 -loaded CA mats. Figure 4A compares the weight loss from the H_2O_2 -loaded CA mats with that of the as-received CA mats. The results show that CA mats are loaded with ~19 wt% of $H_2O_2-H_2O$ whereas as received CA mat has ~5 wt% absorbed moisture or other volatiles. Figure 4B compares the weight loss from the H_2O_2 -loaded CA mats with that of the as received $H_2O_2-H_2O$ (50:50 w/w) solution. The results show that H_2O_2 -loaded CA mats lose more than 60% of available H_2O_2 when quickly heated to 37°C and held at this temperature for 60 minutes. However, in comparison, 100% of H_2O_2 – H_2O (50:50 w/w) solution evaporates within 15 minutes at this same temperature.

Figure 4. TGA curves for (A) as received CA mat and 9.5 wt% H₂O₂ loaded CA mat (processed at 25°C and 1200 psig) and (B) as received H₂O₂-H₂O (50:50 w/w) solution and 9.5 wt% H₂O₂ loaded CA mat on CA mat weight free basis.

Figure 5 shows the shelf-life of H_2O_2 -loaded CA mats determined at 2-to-8°C and 20-to-23°C. Approximately 50 wt% of the loaded H_2O_2 is available in the CA mats when stored at 2-to-8°C for 30 days, whereas the mats stored at 20-to-23°C loses 100 wt% of loaded H_2O_2 in the same time. H_2O_2 slowly diffuses and subsequently evaporates from the CA mats at a rate determined by the diffusion of H_2O_2 through CA mats. It is expected that a thin polymer coating will minimize the loss of H_2O_2 , and, hence, increase the shelf-life of the product. Typical over the counter 3 wt% H_2O_2 -H₂O solution shelf-life is significantly longer compared to the H_2O_2 -loaded CA mats, which is due to the presence of H_2O_2 stabilizers in the solutions. Further studies are in progress to incorporate stabilizers into the CA mats along with the H_2O_2 to determine if the shelf life of the H_2O_2 -loaded CA mats can be increased.

Figure 5. Storage stability of H_2O_2 -loaded CA mats at 2-to-8°C (•) and 20-to-23°C (•).

Figure 6 shows SEM images of CA mats before and after H_2O_2 loading. The morphology of the H_2O_2 -loaded CA mat (Figure 6B) looks similar to that of the virgin CA mat (Figure 6A), which indicates that the CO_2 assisted impregnation process has no effect on the

morphology of the mats. Note that CA mats lose their structural integrity if soaked directly in $H_2O_2-H_2O$ solutions at H_2O_2 concentrations greater than 30 wt%. Hence, H_2O_2 impregnation using a CO₂ assisted process offers a significant potential for creating novel materials for advanced wound care applications.

Figure 6. SEM images of CA mats (A) as received and (B) ~22 wt% H₂O₂-loaded CA mat.

Figure 7 compares the H_2O_2 release rate and corresponding calculated O_2 production rate from the H_2O_2 -loaded CA mats. Both H_2O_2 release and corresponding O_2 production are normalized for a 1.0 cm² size CA mat per minute within the time range shown on the abscissa. The O_2 production in Figure 7B is calculated assuming one-half mole of O_2 is created from the decomposition of a mole of H_2O_2 and using the ideal gas equation at 37 °C and 1 atm. The total O_2 production from the H_2O_2 -loaded CA mats is an order of magnitude higher than the typical skin O_2 consumption, which is ~ 0.25 µL per cm² of skin. However, the O_2 production can be tailored by manipulating the amount of H_2O_2 loading into the CA mats. The H_2O_2 -loaded CA mats developed in the present study can potentially be used for topical oxygenation, needed for wound healing, given the available total O_2 production and the sustained O_2 release for long periods of time.

Figure 7. *in vitro* H₂O₂ release kinetics from the 22 wt% H₂O₂–loaded CA mat (15 mm X 15 mm, processed at 25 °C, 1200 psi, and 80:20 w/w H₂O₂–H₂O solution used in impregnation) measured in saline at 37°C.

CONCLUSION

In this study CA mats are successfully impregnated with H_2O_2 using sub and supercritical CO₂ at mild operating temperatures and pressures. The H_2O_2 loading in the CA mats can be tailored between 2-to-25 wt% by manipulating the impregnation process parameters. Maximum H_2O_2 loading into CA mats is achieved at temperatures of 25-to-30 °C, which is likely due to the higher partitioning of H_2O_2 from CO₂-rich phase to CA mats. Shelf-life studies show that storing the H_2O_2 -loaded CA mats at 2-to-8 °C retains more than 50 wt% of the loaded H_2O_2 and thus storing in the refrigerator is preferred over room temperature. The CO₂ assisted impregnation process had no effect on the morphology of the CA mats. *in vitro* release studies reveal that sustained H_2O_2 -loaded CA mats. We anticipate that these mats can find potential applications for advanced wound care.

ACKNOWLDGMENTS

The authors gratefully acknowledge support from the Office of Naval Research from Grant N000140710526.

REFERENCES

- (1) Ji, C.; Barrett, A.; Poole-Warren, L. A.; Foster, N. R.; Dehghani, F., Int. J. Pharm. 2010, 391, 187-196.
- (2) Kazarian, S. G.; Martirosyan, G. G., Int. J. Pharm. 2002, 232, 81-90.
- (3) Shen, Z.; Huvard, G. S.; Warriner, C. S.; Mc Hugh, M.; Banyasz, J. L.; Mishra, M. K., *Polymer* **2008**, *49*, 1579-1586.
- (4) Gorle, B. S. K.; Smirnova, I.; McHugh, M. A., J. Supercrit. Fluids 2009, 48, 85-92.
- (5) Kazarian, S. G.; Brantley, N. H.; West, B. L.; Vincent, M. F.; Eckert, C. A., *Appl. Spectrosc.* **1997**, *51*, 491-494.
- (6) Berens, A. R.; Huvard, G. S.; Korsmeyer, R. W.; Kunig, F. W., J. Appl. Polym. Sci. 1992, 46, 231-242.
- (7) Ward, K. R.; Huvard, G. S.; McHugh, M.; Mallepally, R. R.; Imbruce, R., *Respir. Care* **2013**, *58*, 184-195.
- (8) Harrison, B. S.; Eberli, D.; Lee, S. J.; Atala, A.; Yoo, J. J., *Biomaterials* **2007**, *28*, 4628-34.
- (9) Sen, C. K., Wound Repair Regen 2009, 17, 1-18.
- (10) Rodriguez, P. G.; Felix, F. N.; Woodley, D. T.; Shim, E. K., *Dermatol. Surg.* **2008**, *34*, 1159-1169.
- (11) Roe, D. F.; Gibbins, B. L.; Ladizinsky, D. A., J. Surg. Res. 2010, 159, e29-e36.